中国开发网: 论坛: 程序员情感CBD: 贴子 22519
Fish
以下資料權威程度:100%,因爲來自:國立成功大學學位論文全文系統
論文編號:etd-0730104-131644
統計 本論文已被瀏覽 3780 次,被下載 13083 次
中文姓名 胡冠宇
英文姓名 Guan-Yu Hu
電子信箱 不公開
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Engineering Science
學年度 92
學期 2
學位(中) 碩士
學位(英) Master
論文種類 碩士論文
論文語文別 中文
口試日期 2004-07-23
論文名稱(中) 基於膚色之裸體影像偵測之研究
論文名稱(英) The Study on Naked People Image Detection Based on Skin Color
頁數 71
孫永年 - 口試委員
陳澤生 - 口試委員
王明習 - 指導教授

摘要

本論文在以膚色為基礎的裸體影像偵測研究上,提出一個新方法,以將裸體影像分成三大類特徵模組的方式來加以偵測。首先,採用Bayesian YCbCr膚色偵測模型,來做為膚色偵測的方法。再將含大量膚色的影像丟入裸體影像分類流程中,以分類出裸體影像和非裸體影像。而這些分類流程中,包含臉部特寫影像分類器,而用來過濾會影響裸體偵測效能的臉部特寫影像;全裸影像分類器,用來過濾膚色大量集中在軀體上,影像中人物一絲不掛之全裸圖;胸前特徵影像分類器,利用顏色和亮度上的差異,以及胸前特徵與膚色間之關係,來切割出胸前特徵,並以之作為裸露胸前特徵影像判別之依據;裸露私處部位影像分類器,利用快速物件分析的方式,分析膚色像素在影像上的分布,來切割出私處部位,並以之作為判斷之依據。本論文,測試了從網路下載總共1538張影像,研究成果有89.79%正確率,在未來不但有助於色情影像上的防堵,也能提供作為影像內容擷取技術上的參考。

章節目錄

中文摘要.........................................................i
Abstract........................................................ii
誌謝...........................................................iii
目錄............................................................iv
圖目錄..........................................................vi

第一章 緒論..................................................1
1.1 研究動機與目的...........................................1
1.2 過去之相關研究...........................................3
1.3 研究方法概述.............................................5
1.4 本文大綱.................................................6
第二章 膚色偵測技術..........................................7
2.1 色彩空間的選擇...........................................8
2.1.1 在膚色偵測技術上最好的色彩空間...........................8
2.1.2 YCBCR色彩空間...........................................10
2.2 膚色分類模型............................................12
2.2.1 BAYESIAN YCBCR膚色模型..................................12
2.2.2 BAYESIAN YCBCR膚色模型訓練流程..........................14
第三章 裸體影像分類器.......................................20
3.1 臉部特寫影像分類器......................................22
3.1.1 HAAR臉部偵測技術........................................24
3.1.2 臉部特寫影像分類........................................25
3.2 全裸影像分類器..........................................26
3.3 胸前特徵影像分類器......................................28
3.3.1 胸前特徵圖轉換(NIPPLE MAP TRANSFORMATION)...............29
3.3.2 胸前特徵圖的影像之加強(NIPPLE MAP ENHANCEMENT)..........30
3.3.3 胸前特徵的切割(NIPPLE MAP SEGMENTATION).................33
3.3.3.1 類似橢圓的形狀..........................................34
3.3.3.2 SOBEL邊界...............................................35
3.3.3.3 大量膚色環境............................................36
3.4 私處部位分類器..........................................38
3.4.1 應用SOBEL邊緣偵測的前處理...............................39
3.4.2 應用快速分析物件的前處理................................40
3.4.3 私處部位特徵的擷取......................................46
第四章 實驗結果與討論.......................................49
4.1 BAYESIAN YCBCR膚色模型測試結果..........................50
4.2 HAAR臉部特寫影像分類器測試結果..........................53
4.3 全裸影像分類器測試結果..................................55
4.4 胸前特徵影像分類器測試結果..............................58
4.5 私處部位影像分類器測試結果..............................61
4.6 整個裸體偵測系統測試結果................................64
第五章 結論與未來展望.......................................66
5.1 結論....................................................66
5.2 未來展望................................................67


參考文獻
[1] A. Albiol, L. Torres, and E.J. Delp, “Optimum Color Spaces for Skin Detection,” Image Processing, 2001. Proceedings. 2001 International Conference on, IEEE, Thessaloniki Greece, Vol. 1, pp. 122-124, Oct. 2001.
[2] Bimbo, A.D., Visual Information Retrieval, Morgan Kaufmann Publishers, Inc., San Francisco, California, 1999.
[3] CCIR, “Encoding parameters of digital television for studios”, CCIR Recommendation 601-2, Int. Radio Consult. Committee, Geneva, Switzerland, 1990.
[4] D. Chai and A. Bouzerdoum, “A Bayesian Approach to Skin Color Classification in YCbCr Color Space,” TENCON 2000. Proceedings, IEEE, Kuala Lumpur Malaysia, Vol. 2, pp. 421-424, Sept. 2000.
[5] L.L. Cao, X.L. Li, N.H. Yu, and Z.K. Liu, “Naked People Retrieval Based on Adaboost Learning,” Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on, IEEE, Vol. 2, pp. 1133-1138, Nov. 2002.
[6] D.A. Forsyth, and M.M. Fleck, “Identifying Nude Pictures,” Applications of Computer Vision, 1996. WACV '96., Proceedings 3rd IEEE Workshop on, IEEE, Sarasota, FL USA, pp. 103-108, Dec. 1996.
[7] Y. Freund and R.E. Schapire, “Experiments with a New Boosting Algorithm,” in Proceedings of theThirteenth International Conference. on Machine Learning, pp. 148-156, 1996.
[8] Y. Freund and R.E Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of Computer and System Sciences, Vol. 55, pp. 119-139, 1997
[9] R.L. Hsu, A.M. Mohamed, and A.K. Jain, “Face Detection in Color Images,” IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 24, No. 5, pp. 696-706, May 2002.
[10] F. Jiao, W. Gao, L. Duan, and G. Cui, “Detecting Adult Image Using Multiple Features,” Info-tech and Info-net, 2001. Proceedings. ICII 2001 - Beijing. 2001 International Conferences on, IEEE, Beijing China, Vol. 3, pp. 378-383, Nov. 2001.
[11] R. Lienhart, A Kuranov, and V. Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection,” Technical report, MRL, Intel Labs, 2002.
[12] A.J. Smola and B. Schölkopf, “A Tutorial on Support Vector Regression,” NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK, 1998.
[13] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-Based Image Retrieval at The End of Early Years,” IEEE Trans. On PAMI, Vol. 22, no.12, pp. 1349-1380, Dec. 2000.
[14] P. Vioal and M. Jones, “Robust Real-time Object Detection,” In Proc. of IEEE Workshop on Statistical and Theories of Computer Vision, 2001.
[15] V. Vezhnevets, V. Sazonov, and A. Andreeva, “A Survey on Pixel-Based Skin Color Detection Techniques,” Proc. Graphicon-2003, pp. 85-92, Moscow, Russia, Sep. 2003.
[16] M.H. Yang, D.J. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions on , Vol. 24, pp. 34 - 58, Jan. 2002.
[17] Open Source Computer Vision Library (OpenCV) http://sourceforge.net/projects/opencvlibrary/


-
严肃点,不许笑
大家都是出来卖的,何苦自己人为难自己人
那些活好的,或者活新的,或者花样多的,
或者老板拉皮条功夫好能拉到肯多花钱的客的,
拜托不要老是打击年老色衰的同行了

老鱼记事 老鱼侃棋 老鱼围脖


相关信息:


欢迎光临本社区,您还没有登录,不能发贴子。请在 这里登录